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.We prove! the existence of classical solutions to certain fully non-
linear second order elliptic equations with large zeroth order coefficient.
The principal tool is an a priori estimate asserting that the §2'a—norm

of the solution cannot lie in a certain interval of the positive real axis. «
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SIGNIFICANCE AND EXPLANATION

The class of second order linear and nonlinear elliptic partial
differential equations models many phenomena in physics and control theory.
Linear elliptic equations are very well understood, and so certain classes
of "quasilinear" equations (with nonlinearities involving only lower order
derivatives) can be studied via modifications of the linear theory.

In this paper we prove some existence theorems for certain "fully
nonlinear"” (= non-quasilinear) second order elliptic equations with large
zeroth order coefficient. The proofs depend upon a careful analysis of

various estimates for linear equations.
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FULLY NONLINEAR SECOND ORDER ELLIPTIC EQUATIONS
WITH LARGE ZEROTH ORDER COEFFICIENT

- Lawrence C. Evans* and Pierre-Louis Lions**
1. INTRODUCTION.

This paper describes a fairly simple method for proving the classical solwvarili:
of certain fully nonlinear second order elliptic equations, provided the coefficicnt F
the zeroth order term is sufficiently large. Briefly, the idea is first to show by an

2’

s s . a X . L
a priori estimate that the C -norm of a solution cannot lie in a certain interwval

R (Cl,Cz) of the positive real line and, second, to eliminate by a continuation argum- :.t
the possibility that this norm ever exceeds the constant C2. (Our technicue is tio.
reminiscent of certain methods for proving global existence in time of solutions %o
various nonlinear evolution equations with small initial data.)
We begin now the precise statements of our existence theorems by assuming that
2

F: R *R xR xR -+R

is a given smooth function satisfying the ellipticity assumption

ﬁp’F (e,q,x0) 66, forall £= (..., )¢ B,

ij
! n2 n n
for some real number 6 >0 and all peé R ,qge R, reR, xeR . Ve also

1.1 olel? -

suppose that there exists a constant M such that

(1.2) [F(0,0,0,%x)] <M for all x
and
(1.3) [DF(p,q,r,x)f,!DZF(p,q,r,x)| <M for all p.q,r,x .

Let us consider first the nonlinear partial differential equation

(1.4) A - F(Dzu,Du,u,x) =0 in R .

*Supported in part by the National Science Foundation under Grant No. MCS77-019%2;
Alfred P. Sloan Fellow, 1979-8l. Address of author: Department of ‘athematics,
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Our existence theorem is this:

Theorem 1. Under the above assumptions there exists a constant )\0 such that (1.4)
has a unique solution

ue C"(R) (for all O <a <1)
provided

1.5 AD> A .
(1.5) 2,

The constant AO depends only on n,8, and M. We prove Theorem 1 in §3, after first
obtaining in §2 the key estimate described above.

Our method applies also to nonlinear elliptic equations on a bounded domain, pro-

vided a restriction ((1.7) below) is placed on F. We consider the equation

2 .
Au - F(Du,Du,u,x) =0 in Q
(1.6)
u=0 on 23!,

where Q C ' is a bounded smooth domain. Let us now suppose, in addition to (lL.1)-
(1.3}, that
(1.7) F(0,0,0,x) =0 x € 3N .
Theorem 2. Under these hypotheses there exists a constant )\0 such that (1.6) has a )
unique solution

ue @ (for all 0 <a <1)
provided
(1.8) x> )‘o .

The constant )\0 depends only on Q,0, and M. Theorem 2 is proved in §4. x
In §5 we collect various comments concerning hypothesis (1.7) and also certain

extensions of our technique to related problems. The appendix (86) contains some

lemmas concerning the standard 1P second order elliptic estimates.
Finally we note that Skrypnik (6] has obtained by a completely different method

some results on fully nonlinear elliptic equations (even of higher order) with large

zeroth order coefficient. Some other recent papers on fully nonlinear second order

elliptic equations are Evans-Friedman [2], P. L. Lions [5], and Evans [1].

-2~
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Notation.

The letter

Hu“cz"‘”(m")

”u”C%a(ﬁ)

throughout.

g
S

D2u = (D

X, x, T x.x, " X X
13

"C" denotes various constants depending only on known quantities.

= sup

|0%u(x) - D2uly) |

leE]Rn 'X - y,n
x#y

is similarly defined.

+ supn 1D2u(x)| + sup [Du(x)f + sup lu(x)? ;
X€ R x€R X€ R

We employ the implicit summarion convention

-3=
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2. PRELIMINARY ESTIMATES.

The goal of this section is our proof (Lemma 2.3) that for X > Y, . large

enough, there exists an interval (Cl,Cz) in which the Cz'a-nom of a sclution of
(1.4) cannot lie. First, however, we must know that the solution and its gradient

behave well for large XA; the first two lemmas provide this information.

2,a

Lemma 2.1. Suppose that v e C (Rn) (for some O < a < 1) solves the linear

elliptic equation
(2.1) o~ a,, xX)v + b (x)v + cx)v = £(x)
i3 X %, i x,

s n
in R, where

ag Lelmg el ] < v
aij(x)EiEj > 615]2 for all x,£¢ R ,
c >0
Then
(2.2) wll <l
(®) L™ (®")
Proof. The auxillary function
€ --s\x‘2
w (x) = v(x)e I (e >0)

solves the p.d.e.

€ € € €
w - a, . W + bW  +cCw
i x, %, i7x,
i7j i
2 2 2
- -elxl —e'x!
= fe el +a,, [2ex,v. + 2ex. v + 2e6_, -452x,x.]e elx|” b, [2ex,vie = X
i3 3x 1%, ij i3 i i
since [w'x)| 0 as |x| » =, |w°| attains its maximum at a finite point in .

Applying the maximum principle at this point and recalling the inequalities

—c'x|2 2 -s:lx‘2
ff—[xle ! , clx|7e o< C,
we discover

. + o (llovl] it el | + 1)

11wl < llell
1 ™ n. — E
L (R) L (R) L (R) L (R) .

Now send € » 0 to obtain (2.2). .

-4-
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Lemma 2.2. Assume that u € C°' " (R") (0 < 2 < 1) solves (1.4). Then there oxit
a constant CO such that
(2.3) W} - C

wTEYy T

The constant CO is independent of 1, provided » 1is large cnough.
Proof. We may as well assume

x

(2.4) Y

(p.qsx,x) <0 for all p,q,r,x ,
since otherwise we can rewrite (1.4) in the form
2 . n
Ay - F'(D'u,Du,u,x) = 0 in R
for F'(p,q,r,x) = F(p,qg,r,%x) - Mr, X = X - M,

Now u solves the equation

Au

1 1
{f oF (tDzu,tDu,tu,x)dtju
M xixj

i

1
/ JE (tDzu,tDu,tu,x)dt}u
o X . ¥

i i

Yoo 2
[}' 32 (Du,tDu,tu,x)dt |u
0 -

F(0,0,0,x) in R

Hypotheses (1.1) - (1.3) and (2.4) permit us to invoke Lemma 2.1 and obtain the bouni

1] c.
oo n, —
L (R)
Next let us differentiate (1.4) with respect to xk(k = 1,2,...,n); then we rot..
that v = u solves the linear p.d.e.
2
o~ 3F (Dzu,Du,u,x) v - S_F (D7u,bu,u,x)v
p; . X, X, R X,
ij i3 i i

(2.5)

; 4 5
- -g{:— (Dzu,Du.u,x)v = —\—;;F— {(D"u,Du,u,x)

We once more apply Lemma 2.1 to find

houll | <c. .
L (R)




- R,

Next is our main estimate:

Lemma 2.3. Fix some O < a < 1. Then there exist XO > 0 and constants 0 < Cl < C.,

S

such that if u solves (1.4),

AZ A
and
HUH 2,0 ,.n _<_C2 '
CT'URY)
then
Hu||2a n .<_C1'
R
Proof. Choose B8 so small and p so large that
(2.6) 0<8<a=1-25,
P
We recall from (2.5) that v = gy (k =1,2,...,n) solves the linear elliptic
equation
2 )
sgz— (D u,Du,u,x)vx <t §§L (Dzu,Du,u,x)vx
ij i3 i i
(2.7)
9 2 3 2
+ SE (D u,bu,u,x)v = Av - £ (D"u,Du,u,x) ,
r 3x
k
the right hand side of which - according to Lemma 2.2 and assumption (1.3) - is bounded
on Rn, independently of A.
Denote by Bl and B2 any two concentric closed balls, of radius 1 and 2
respectively. We apply the standard elliptic interior 1P estimates to (2.7) and

obtain (see lLemma 6.1 in the appendix):

fa, |l = lIvll

X 2,p 2,p
k W (Bl) W (Bl)

+|lvll )

N
< ctu]|
e 8y 1P (s,)

3
+ D (||aw=- =—F(-) ]|

X, ho)
» k L" (B,)

+1) (k=

o)

N
sctlull 5 4 1,2,....m) ,
c”'(B

for certain constants C and N (the precise size of N, in particular, is
irrelevant).
-6-
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Then Morrey's theorem and (2.6) imnly

Won N
e’

(Bl) c’ (B:)

flul + 1)

W 2,2
2

The constant C ‘does not depend on the location of the balls B, < B, in Rn. This

1 2
estimate therefore implies

‘l I N

full < c(lul . + 1)

B! 2 < B
ST SR )

We recall next interpolation inequality
1-0 o}

fhutl < Cllul] atl?

Ry Ay UEY

{for some 0 < o < 1; c¢f. Friedman [3]); this gives us the estimate
N(l-0) pN

<ctfuliE gty

'R L (R)

HUH + 1)
c2,a(mﬁ)
(2.8)
N(l-p)
< C(Hul] + 1)
oAt )
PN

by (2.3). So far the constants C,N,p depend only on knawn quantities and do not

depend on A.

Now choose

Cl = 2C ’
1 2 1
4
} Since we have assumed
!
! [lull <c, ,
i Cz,a(rp) 2
i (2.8) implias
i
. N(l-
} (2.9) llall <) Ly cac=c
i s 0 n - 1
[of (R) 5
AP
.
A2 Xo' Ao large enough.

~7-




3. PROOF OF THEOREM 1

We suppose now that 0 < a <1, X%, 0 <C  «<C are the constants from

0 1 2
2,
Lerma 2.3. We will prove that (1.4) has a solution u ¢ C°’ (Rn) whenever =
and a standard bootstrap argument then implies u ¢ CBf’(Rn) for all 2 - . - 1.
For 0 7t <1 consider the problems
t 2t t t
(3.1)t M - Ft(D u ,Du ,u ,x) = 0 in =" ,
where
2 - o 2
(3.2) Ft (D"w,Dw,w,x) = (1 - t) € Aw + tF(D"w,Dw,w,x)
Define
- . t by
T= {te [0,11] {3.1)_ has a solution u-, lu | <c -
t CZ'Q(FP) ~ 1

N 0 . ; :
Obviously 0 € T, and u = 0. Notice also that standard theory implies the

. . t .
uniqueness of the solutions u of (3.1)t with

t
“u ch'a(mn) = C]_

It is also evident that T is closed: if (ci} crT, ti >t then, since

’
Hutil) is bounded, we have ‘
SR
utl - uto in Ciég(ﬁp)
and
Huto(‘ < lim inf Huti{1 <C .
A UE T i A Tt

Finally we assert that T is relatively open in [0,1]. Once this is proved we

can conclude 1 € T; that is, (1.4) has a solution. Consider therefore the mapping

Glt,a) ¢ [0,1] = 2 HE) » MR
defined by

2
G(t,u) = (u - Ft(D u,Du,u,x)

Clearly G is continuous. 1Its Frechet derivative in u at any point (t,u) 1is an
isomorphism according to standard theory for linear elliptic equations with HSldcer

continuous coefficients:

-8~




3
- -

Gu(t,u)v 2w - (1 -t) - v - t‘v./p” (D“u,:ru.u,x)vx.x.
1] J

2 3F .2 0

+ — (D'u,Du,u,x)v + z— (D7u,Du,u,x)v.

in xi 3r .

Note also that the mapping
(t,u) - G (t,u)
u
is continuous.

Now select any to € TN (0,1). By the implicit function theorem, there exist

2
some € > 0 and a continuous function v : (to - E,to +g) - C7’ x(I.tn) so that
t0
G(t,v(t)) = G(to,u Yy =0
Clearly
t
vi{t) £ u
to £
solves (B'I)t' since |lu V|| 2 @ .n S Cp» we have Ta™ |l 2.5 n 5 for
TR R

!t - to] < g€',e' small enough. Then Lemma 2.3 implies

t
ta” Il =€
C2, x(Rn) 1
that is, (to - ¢ ,to + e') CT.
Theorem 1 is proved.
-Q-
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4. PROOF OF THEQOREM 2.

In proving Theorem 2 we may mimic with obvious modifications the calculations in
§3; the only real difficulty is to modify Lemmas 2.2 and 2.3 to the case that
replaces Rn: here the extra hypothesis (1.7) is crucial to our argument.
Lemma 4.1. Assume that u € C3'G(5) (0 < a <1) solves (1L.6). Then there exists a
constant C0 such that

(4.1) 1wl Le =€
W

C0 is independent of X, so long as X is large enough.
Proof. As in the proof of Lemma 2.2, we may assume

F 3

v (p,q,x,x} = O for all p,q,r,x .

The estimate

bull ,  <c
L7 (@)

is then immediate from the maximum principle.
We must next prove

(4.2) Alpul]  <c
3

for some constant C. To see this first choose any point x* € 3Q. As 32 is smooth
and therefore satisfies the uniform exterior sphere condition, we may assume, upon a
change of coordinates if necessary, that

x* = (0,0,...,R) ,

B(O,R) Y 30 = {x*}
for some fixed R > 0.

Consider now the auxillary function

(4.3) v(x) =

>|=

1 1
5 Ixlp)

where u,p > 0 are to be selected. We have

<

3
>

i)

X, p+2

-10-




and
P, (G +1)1x.x
v = - l‘ -
X, X, P2 p+d !
i3 x X
so that
[ s 2 :
F(D°v,Dv,v,%) = [ T (to v,thv, ey, x)dtoy
L0 pij PR
1
P 1
+ 4 = (tDzv,tDv,tv,x)dtw
{ 3q, bOX.
o} i S §
e 2 !
+ [f — (tD VDY, ty, X0 de v 4 F(0,0,0,x)
i *
< F(0,0,0,x)
for p large enough. On the other hand since F(0,0,0,-) = 0 on 2!, we have
1F(0,0,0,%)] < M|x - x**|
where

x** € 32 belongs to the segment ox ,
Jx**| >R .

But note also that

wix) > Avix) - vix**)) = e
lx** [P [x?

R 2 S 1 k= S
|x‘p [ap ] where x ax, 3ia o) <ac<1

pC(L - a) x| = uClx - x**

{v

for some constant C > 0. Hence

(4.5) Av(x) > F(0,0,0,x) X €D

if u is large enough. According to (4.4) and (4.3) we have

Av = ) - [F(DZV,DV,V,X) - F(Dzu,Du,u,x)] >0 in Q.

The maximum principle therefore implies

u<v in .

Since u(x*) = v(x*) = 0, we have

-11-
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3u(x*) Sv (x*) o
——— 7 mem—— Y -
sn  — o -

A similar argument provides an upper bound. This proves (4.2).
The interior bound on Du is easy now. We differentiate (1.6) witi rocic-t

x, (k=1,2,...,n):

k
IF 3F F L
X“x-a uxxx+4q uxx+37u =
PO T T e B T 1 U
Should + ux attain its maximum at some point xO € ., we have
k
+ X (x ) <+F (Dz(x)Du(x) (x },x ) <M;
LAy gl ZIE, P UK BuiXg s uixgt e Xg s 0
Xk k
and should the maximum occur on 32, we recall (4.2). L
Lemma 4.2. Fix some O < o < 1., Then there exist )'O > 0 and constants z, "

such that if u solves (1.6),

A > )‘O B
and
[l . 2C .
C2’a(Q) 2
then
hall _ ¢
@t

Proof. As in the proof of Lemma 2.3 choose 8 and p so that

0<B<a=1-2.
P

According to Lemma 4.1 and Lemma 6.2 in the appendix we have

N
[lufl <ctlull™, o _ +D
w3ip CZ’L“ N

[§93)]
for some constants C and N. This estimate and a calculation almost precisely like

that in the proof of lLemma 2.3 imply the result. L]




5. COMMENTS AND EXTENSIONS.

a. Hypothesis (1.7)

A review of 53 and *4 makes it clear that the estimate Lemma 4.1 ;rovid i vy

for our technique; for if the right hand side of (2.7) hecomes ‘inbw: 1 wish lar
we cannot then select ko large enough to obtain (2.9). Temma 4.1 in fturn beren:
on the assumption (1.7) {(i.e. "F(0,0,0,x) =0 on .") as the following .oxaml

shows: Consider the problem

Then

so that
' (0) ~c/x for large 1 .
In this case Lemma 4.1 fails, as do its obvious modifications (e.g. replacing the
; p
with L° norms).

b. Neumann boundary conditions

Consider the p.d.e.

2 .
Az - F(D u,Du,u,x) = 0 in

(5.1)
u .
W 0 on i,
) ] n W o
when  is now assumed to be a smooth bounded, convex domain in R and Y fenot.

the outward normal derivative. We claim that (5.1) admits a unique solution assumin:
that A 1is large enough and F satisfies hypotheses (1.1) - (1.3); assumption (1.7}
is not needed here.

Indeed it suffices to obtain the bound

{5.2) flwadfl | 0 ¢
W'

for C independent of X, ) large enough. According to Hopf's maximum princiyl.
lul must attain its maximum at some point of , where as hefore
H‘U’,l\ ;C .

a

L ()

-13-




Next a straightforward calculation shows us that

v 2 Du
solves
2w \'F(’)v -;F_(’)v —21( )v
P X. X, Le! < r
ij i3 i i
(5.3)
SR ) 5 FC-)

mn

X - “x x. Ux x
% X Pis %™ %Y
If v attains its maximum in , the maximum principle gives the desircl ectimat.

(5.3) IRt e

On the other hand Lemma I.1 in P. L. Lions (6] implies

v
n —

(the convexity of 7 is used here). The Hopf maximum principle therefore eliminates
the possibility that v attains its maximum only on .
This proves the estimate (5.2) and - as noted - the remainder of the existence

proof for (5.1) follows as in Lemma 2.3 and $3. L

-14-
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6. APPENDIXN:

T SECOND-ORDER COEPFICTENTS,

In 2 we made reference to the following estimat. concerning the dependence of the
o N : . . , C s
standard L° elliptic estimates on the -norm of the second order coefficients:

. . : n .
Lemma 6.1. Let B1 and B7 ¢ two concentric closed balls in R, of radius 1 and 2,

2 il
respectively. Assume that v ¢ °7° (B)) solves the linear equation

(6.1) -a, . (x)v + b, (X)v + clx)v = f
ij xix] i xi

in 82, where

tla  toip f,le! <
ij! i’ b=
6.2
.2) { o 2 .
Da, o5 &, » ol for all x,7 ¢ K
\ 13 11 -
and
:1
a,. € C (B for some O < § - 1
ij 2

Then for each 1 < p < « there exist constants C and N, depending only on M,6,p,

and n, such that

N
(6.3) k2l < c(lfa, | + el + vl )
2,p - ij" B p P
w (Bl) C (BZ) L (Bz) L (Bz)
Proof.

The bound (6.3) is a standard consequence of linear P theory, except for the

stated dependence on the CB-norm of the aij'
Briefly then, let us first note that a solution v of

f in  B(R)

i}

Lv

v = 0 near 3B(R)

(L denoting the operator in (6.1) and B(R) some ball of radius R) satisfies the

bound

2. P N
(6.4) lio*ell cctliEl el )

L7 (B(R)) L7 (B(R)) w 'Y B(R))
provided
)
(6.5) R {la, .l =<,
B Emn
=15~
e —




for some small, but fixed constant *'. (Proof: a standard perturbation of ~o. ffi-

(cf. Ladyéenskaja and Urallceva [4, p. 190-193}) reduces (6.4) to the known estimate
for 4.) n
Now B, can be covered by K = C{f|aij!§[, + 1

1
1 i
C i -

balls Bk of radius

£

satisfying (6.5). We choose cutoff functions :k so that

(o - « ro=
O‘c_,k_l, -~ 1 on Bk'
(6.6) Lk = 0 near BZBR (2Bk = ball concentric with Bk and with radius =)
, o 2 C
e | <5, Io7gl <=
R
and set
k -1
6.7 " T % { ! CE)
' =1
to obtain a partition of unity on Bl' Define
(6.8) vk = nkv on ‘Bk
' We have ’
| (6.9) ka = nkf - aij[zvx_nkx, + vnkx.x‘] + bivnkx, = fk .
i 3 i3 i
Then (6.4) implies
)
2 pS 2 CK
B b
CRTS I 1 P N 15N (R 4171 R 2 A,
L (Bl) k=1 L (2Bk) R L (Bz) W (B3/2)
Similarly
CK
(S 3 (T M N I
W (33/2) R L (Bz) L (132)
The last two estimates, (6.5), and the definition of K give us (6.3). L]

For the proof of Lemma 4.2 we need

lemma 6.2. Suppose that u € C3'Y(:72) for some J < y < 1 solves

F(p%u,Du,u,x) = £(x) in
(6.11)

.
u=0 on

-16-




P

for some f ¢ wl'p(j). Then for each 1 < p <® and 0 < & <1 there exist constant:

C and N, depending only on M,4,p, , and :, such that
(6.12) lull < c(ljul™ + 1 el
3,p, ., — ' 2,8 ~ ‘ l,p,.
w ) c () W (B
Proof. Differentiating (6.11) we note that v = u, (the derivative of u 1in an

arbitrary direction ¢f) satisfies

-

3F 2 F 2
. (D u,Du,u,x)vx'x' + 357 (D u,Du,u,x)vx.
ij i3 i i
3F 2 3 2
+ i (D"u,dDu,u,x)v = £, - ?; (D7u,bu,u,x) ;
the right hand side of this expression belongs to Lp(l). Now cover . with

K 2 + 1] balls B of radius By for R defined by
p.. g = k 2
ij (2)
By 3F( + )
Rl Sl g =
ij c )

e' from (6.5); we may assume that those balls Bk which intersect ! are in fact
centered at a point belonging to 3.

Define Ck'nk'vk by (6.6)-(6.8).

Now if Bk C o for any given k = 1,2,...,k we recall estimate (6.4) for v =
1f Bk N 3 # ¢, we transform coordinates to the case that 3 D Bk C {xn =01,
reflect Ok across the ® plane (assuming Ok =0 on {xn = 0}), and again apply
(6.4). This method yields a bound on ]]uCH 9 for ¢ = RpoonenX_g- The

w P )

k
remaining derivative U o x ¥ estimate using equation (6.13) for v = u,
n'n'n n

Collecting together these bounds we obtain

N
/Joul| < ctflull + 1) (Jjof]| + o Fl| + |lull
w? P (2) A1) 1P (@) x TPy w2 P ()

Applying a standard interpolation inequality completes the proof. .

-17-




REFERENCES
1. L. C. Evans, On solving certain nonlinear partial differential equations by
accretive operator methods, to appear in Israel J. Math.
2. L. C. EBvans and A. Friedman, Stochastic optimal switching and the Dirichlet problem
for the Bellman equation, Trans. Am. Math. Soc. 253 (1979), 365-389.

3. A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York,

1969,

4. 0. A. LadyZenskaja and N. N, Uralceva, Linear and Quasilinear Elliptic Eguations,

Academic Press, New York, 1968.

5. P. L. Lions, Résolution des problémes de Bellman-Dirichlet, to appear; see also
Thése d'Ftat, Paris, 1979.

6. P. L. Lions, Résolution de problémes elliptiques quasilineaires, to appear in Arch.
Rat. Mech. Anal; see also These de 3° cycle, Paris, 1978.

7. I. V. Skrypnik, On the topological character of general nonlinear operators,

Doklady 239 (1978), 538-541 (Russian).

LCE/PLL/ed N l




ATION OF TwRIS PAGE When Data Frrered
READ INSTRUCTIONS
BEFORE COMPLETING FORM

CLASSIF) T

REPORT DOCUMENTATION PAGE

£ GOVT ACCESSION NOy

JORT NUMBER
m AO%(\SX_BI oy

065 , //,. -
TITLE (and Subtitle) o . Com 1
T JFummary Ke o specific
_FULLY_NONLINEAR SECOND QRDER ELLIPTIC EQUATIONS | ""‘"’r"é‘ s K” g’\:z{ﬂ:
-

]

®
€. PERFORMING ORG. REPORT NUMBER

s WITH LARGE ZE.ROTHQRDER CQEIFFfCIENT. .

\ . — ..
7. AUTHOR(s, B A T R CRArE ey

‘ R R 1 E:T DAAG29-8"~C-@p41 .

' 1 : ~ - ~ —- ~ |

Lawrence C. Evans e Pierre-Louis Lions 5744529—1“-C-002%h;

. L ST TEOTOSY
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
.. AREA & WORK UNIT NUMBERS

Work Unit Number 1

Mathematics Research Center, University of
Applied Analysis

Wisconsin

610 Walnut Street
Madison, Wisconsin 53706
11. CONTROLLING OFFICE NAME AND ADDRESS - —rRTE /
/ [ Apr—neo
(See Item 18 below) 13— OMBER OPPAGES
18
T4, MONITORING \GENCY NAME & ADDRESS(If ditferent from Controlling Office) 15. SECURITY CLASS. (of this report)
/ / UNCLASSIFIED
“"\ 154, DECLASSIF!CAT)ON DOWNGRADING
. SCHEDULE
4 16. DISTR BUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited
;

' iy

17. DISTRIBUTION STATEMENT (of rh ted in Block 20, if different/from Report)
- e AT

National Science Foundation

18. SUPPLEMENTARY NOTES
20550

U. S. Army Research Office
P. O. Box 12211 Washington, D.C.
Research Triangle Park

rth Carolina 27709

No
19. KEY WORDS (Continue on reverse side it necessary and ldenti!y by block number)

Nonlinear elliptic equations, a priori estimates continuation methods

20 ABSTRACT (Continue on reverse side !1f necessary and identify by block number)
We prove the existence of classical solutions to certain fully nonlinear

second order elliptic equations with large zeroth order coefficient. The

principal tool is an a priori estimate asserting that the Cz'a—norm of the

solution cannot lie in a certain interval of the positive real axis.
221200  —AA_

EDITION OF | NOV 6815 OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THiS PAGE (When Data Entered)

DD 2%, 1473

| L —

oL,

~w

W







